

Enhancing Non-motorized Safety by Simulating Non-motorized Exposure using a Transportation Planning Approach

Tanmoy Bhowmik Assistant Professor Dept. of Civil and Environmental Engineering Portland State University <u>https://www.tanmoybhowmik.com/</u>

OUTLINE

Background

Current Study

Study Area

Data Preparation

Model Framework

Estimation Results

Conclusion

UNIVERSITY OF CENTRAL FLORIDA

 $\mathbf{2}$

BACKGROUND

- \succ Safety risk posed to active transportation users in Florida is rising compared to rest of the US.
- Average pedestrian (bicyclist) fatalities 100,000 per population is 3.70 (7.60) for Florida whereas in whole US it is 1.98 (2.70)

Florida Annual Bicycle Crashes

7,250 Bicycle Crashes

Increase from 2018 to 2022

Most dangerous states for pedestrians (2010-2019)

THE TOP 20

UNIVERSITY OF CENTRAL FLORIDA

BACKGROUND

/ERSITY OF CENTRAL FLORIDA

CURRENT STUDY

Proposed non-motorists' safety evaluation framework

3/5/2024

CURRENT STUDY

□Integrated framework of non-motorized demand and safety

 \Box 3-step approach proposed

Aggregate level model for nonmotorists generation and attraction at zonal level

Exposure Model

Use aggregate trip information Four model developed-

- Pedestrian generation & attraction,
- Bicycle generation and attraction

CURRENT STUDY

 $\square Integrated framework of non-motorized demand and safety$

Non-motorists

exposure measure

matrices for safety

evaluation

Exposure Matrices

$\square 3$ -step approach proposed

Aggregate level model for nonmotorists generation and attraction at zonal level

Exposure Model

Use aggregate trip information Four model developed-

- Pedestrian generation & attraction,
- Bicycle generation and attraction

Generating different zonal level trip exposure matrices for both mode using trip counts from the exposure model.

OF CENTRAL FLORIDA

Pedestrian and Bicycle crash frequency model

Pedestrian and Bicycle crash severity model

CURRENT STUDY

□Integrated framework of non-motorized demand and safety

□3-step approach proposed

Use aggregate trip information Four model developed-

- Pedestrian generation & attraction,
- Bicycle generation and attraction

Generating different zonal level trip exposure matrices for both mode using trip counts from the exposure model.

STUDY AREA

• CFRPM v6.0

- 4,747 TAZs (Traffic analysis zones)
- 9 counties
- District 5, part of District 1 and 4
- Base year
 - 2010 (Phase I)
 - 2017 (Phase II)
 - 2022 (Phase III)

TY OF CENTRAL FLORIDA

Safer-Sim

DATA PREPARATION

Data Source:

Exposure Model- 2009 NHTS (National Household Travel Survey)

- > 2,749 Household, 5,090 individuals
- > 22,359 trips, Walk trips (8.8%), Bike trips (1.3%),
- > Person trip-weight considered

□ Safety Model- FDOT Crash Analysis Reporting System (CARS) and Signal Four Analytics (S4A)

- > Base year 2010
- > 1,474 Pedestrian Crash
- ▶ 1,012 Bicycle Crash

□ Independent Variables-

- > sociodemographic characteristics,
- roadway and traffic attributes,
- built environment characteristics and
- land use characteristics

UNIVERSITY OF CENTRAL FLORID

1st STEP EXPOSURE MODEL

CENTRAL FLORIDA

METHODOLOGY

□ More than 84% and 96% TAZs have 0 pedestrian and bicycle trip counts

Hurdle Negative Binomial Regression Approach

First part is a binary logit model to identify whether there are any trips in that zone or not (0/1)

2nd part is the count model, if there are trips, what would be the corresponding number?

ESTIMATION RESULTS

UNIVERSITY

	T	0	Likelihood of Walk Trips					
	Exposure Type	Component	Increases	Decreases				
		Probabilistic	Land-use mix , Urban area and number of household					
	Pedestrian Generator	Count	Proportion of 65+ aged population, proportion of arterial road, length of sidewalk, recreational, residential, office and institutional area	Average zonal speed, AADT , proportion of 3 or more lane road, industrial area				
		Probabilistic	Land-use mix, Urban area and number of household					
	Pedestrian Attractor	Count	Proportion of arterial road, length of sidewalk, number of business, entertainment, financial, shopping park and recreational center, recreational, residential, office and institutional area	AADT , proportion of 3 or more lane roads, number of restaurant, number of transit hub, industrial area				
Por	tland State							

ESTIMATION RESULTS

m
• 🖃
\mathcal{O}
Ч
JO.
્મન્
a

•	
	ľ
ç	ľ
7	

-1	

	0	Likelihood of Bicycle Trips					
Exposure Type	Component	Increases	Decreases				
	Probabilistic	Land-use mix, Urban area and number of household					
Bicycle Generator	Count	Proportion of arterial roads, length of sidewalk, industrial, residential, recreational and institutional area	Proportion of 65+ aged population, AADT, proportion of 3 or more lane roads, retail/office area				
	Probabilistic	Land-use mix, Urban area and number of household					
Bicycle Attractor	Count	Proportion of arterial roads, length of sidewalk, number of educational, entertainment, restaurant, transit hub, park and recreational center, industrial, residential and institutional area	Proportion of 3 or more lane roads, number of commercial, financial and shopping center, recreational and office area				
land State							

Zones with Non-motorized O-D Demand

2nd STEP EXPOSURE MATRICES

DESTINATION CHOICE MODEL UNIVERSITY OF CENTRAL

- Examine the zonal attributes that influence the decision process of destination location
- Two different models: (1) Pedestrian destination choice model, and (2) Bicycle destination choice model
- A random utility maximization approach (Multinomial Logit Model)
- □ Generate the destination choice set by assuming that people will walk up to 2 miles and bike up to 6 miles in a trip
- □ **Objective:** forecast and/or evaluate policy implications for future year considering the real-world change

ESTIMATION RESULTS

UNI

UCF

DESTINATION CHOICE	Likelihood of Destination Choice					
	Increases	Decreases				
Pedestrian	Population density , proportion of people aged 65+, traffic signal, number of commercial, educational, financial, restaurant and transit hub, urban, residential and institutional area.	Proportion of people aged 18 to 21, average zonal speed, AADT, truck AADT, number of shopping center, industrial and recreational area				
Bicycle	Proportion of 22-29 aged population, length of bike lane, average zonal speed, number of transit hubs ,commercial, educational, financial and shopping center, urban, residential, recreational, institutional and office area	Population density , number of restaurant, industrial area				

TRIP O-D MATRICES

UNIVERSITY OF CENTRAL FLORIDA

			Pedestrian			Bicycle	
County	Number of TAZs	Trip origin demand	Trip destination demand	Total trip demand	Trip origin demand	Trip destination demand	Total trip demand
Brevard	692	154936.5	149804.8	304741.3	21663.59	23172.9	44836.49
Flagler	141	26241.46	23153.66	49395.12	2940.338	2634.027	5574.365
Indian River	37	12066.78	11826.16	23892.94	1735.289	999.454	2734.743
Lake	350	67309.28	66545.88	133855.2	10784.29	9977.642	20761.94
Marion	422	95199.85	89602.94	184802.8	5238.246	4226.254	9464.501
Orange	781	348163.9	355169.8	703333.7	57661.94	64084.73	121746.7
Osceola	250	67651.62	65181.71	132833.3	4026.134	3875.623	7901.758
Polk	621	185959.9	195543.4	381503.4	10931.12	10687.68	21618.8
Seminole	230	75690.14	79212.17	154902.3	12179.38	11558.89	23738.27
Sumter	147	32272.77	26598.91	58871.68	553.048	817.907	1370.955
Volusia	1076	189987.7	174051.2	364038.8	37957.98	39924.86	77882.84
tland Stat	e						

3rd STEP SAFETY MODEL

CRASH FREQUENCY ANALYSIS

UCF

OF CENTRAL FLORIDA

Crash Frequency Analysis

Portland State

Total number of pedestrian and bicycle crashes for the year 2010

CRASH FREQUENCY	Likelihood of Crash Counts				
CRASH FREQUENCY Pedestrian	Increases	Decreases			
Pedestrian	Population density, traffic signal density, proportion of arterial road, length of sidewalk, AADT , number of educational, transit hubs, restaurant, park and recreational center, urban, residential and land use mix	Proportion of people aged 65+, pedestrian trip demand			
Bicycle	Population density, traffic signal density, proportion of arterial road, length of bike and bus lane, AADT , number of commercial, financial, restaurant, hospital, urban, residential and land use mix, bicycle trip demand	Proportion of people aged 65+,proportion of local road, truck AADT, recreational area			

3rd STEP SAFETY MODEL

CRASH SEVERITY ANALYSIS

UCF

Crash Severity Analysis

Portland State

Total number of pedestrian and bicycle fatal crashes for the year 2010

UCF

OPFS ESTIMATION RESULTS

Likelihood of Crash Proportions

CRASH SEVERITY		
	Increases	Decreases
Pedestrian	VMT	Population density, proportion of people aged 22 to 29, number of commercial center, urban area, pedestrian trip demand
Bicycle	Number of flashing beacon, school signal, park and recreational center, residential area	Population density, availability of bike lane, number of hospitals, urban area, bicycle trip demand

POLICY SCENARIO ANALYSIS

Safer-Sim

OF CENTRAL FLORIDA

POLICY SCENARIOS

- □ Compute aggregate level exogenous variable impact in demand and safety models
- □ All zones, Pedestrian and Bicycle separately
- Multiple CBDs considered in Central Florida region
- □ Compute effect as percentage change

POLICY SCENARIOS

Scenarios	Description of scenarios	Study region	Numbe r of zones	Change in zonal demand		Change in crash count		Change in crash severity proportions Fatal Crash	
			201105	Walk	Bicycle	Walk	Bicycle	Walk	Bicycle
	50% reduction in traffic volume with 2	All zones	4747	0.164	0.043	-0.63	3.144	-4.967	-0.066
Scenario 1 m d b ((miles buffer area of different central business district (CBD)	Zones within 2 miles buffer of CBD	703	1.804	0.389	-3.266	-2.889	-4.687	-0.045
	30% reduction in traffic volume with 2 miles	All zones	4747	0.096	0.026	-0.437	3.622	-4.963	-0.066
Scenario 2	buffer area of different central business district (CBD)	Zones within 2 miles buffer of CBD	703	1.060	0.231	-2.120	-0.274	-4.664	-0.045
	15% reduction in traffic volume with 4 miles	All zones	4747	0.125	0.030	-0.482	3.554	-4.963	-0.066
Scenario 3	buffer area of different central business district (CBD)	Zones within 4 miles buffer of CBD	1375	0.498	0.090	-1.280	1.680	-4.55	0.003
	5% reduction in traffic volume with 6 miles	All zones	4747	0.071	0.013	-0.34	3.935	-4.96	-0.066
Scenario 4	buffer area of different central business district (CBD)	Zones within 6 miles buffer of CBD	1985	0.166	0.027	-0.589	3.281	-4.891	0.015
Portland	State								

UCF

RIDA

POLICY SCENARIOS

- ·	Description of	Study	No.	Change den	in zonal nand	Change in crash count		Change seve propo	in crash rity rtions
Scenarios	scenarios	region	of zones					Fatal Crash	
				Walk	Bicycle	Walk	Bicycle	Walk	Bicycle
Scenario 5	All zones have sidewalk and the new proposed sidewalk length = $\frac{(TAZ \ area)^{0.5}}{2} \ meter$	All zones	4747	-0.438	0.108	-1.360	4.367	-1.013	-0.063
Scenario 6	50% increase in existing sidewalk length	All zones	4747	0.705	0.289	0.985	4.436	-1.111	-0.071
Scenario 7	15% reduction in zonal average maximum speed	All zones	4747	1.407	0.000	-0.143	0.000	-1.107	0.000
Scenario 8	25% reduction in zonal average maximum speed	All zones	4747	2.389	0.000	-0.150	0.000	-1.135	0.000
Scenario 9	15% reduction in zonal proportion of 3+lane road	All zones	4747	0.287	0.576	-0.138	4.436	-1.077	-0.068
Scenario 10	25% reduction in zonal proportion of 3+lane road	All zones	4747	0.484	0.337	-0.143	4.415	-1.085	-0.066

UCF

FUTURE YEAR PREDICTION

FUTURE YEAR PREDICTION (2017)

	Error Rate (Pedestrian)				Error Rate (Bicycle)			
County	Total Crash		Fatal Crash		Total Crash		Fatal Crash	
	Without Exposure	With Exposure	Without Exposure	With Exposure	Without Exposure	With Exposure	Without Exposure	With Exposure
Brevard	7.03%	3.95%	5.28%	3.66%	8.07%	5.98%	6.08%	5.96%
Flagler	11.16%	5.82%	9.37%	4.04%	9.86%	7.05%	9.24%	7.83%
Indian	2 10%	2 0 2 %	6.51%	5.45%	3.91%	2.72%	8.96%	5.86%
River	3.1970	5.0570						
Lake	5.35%	2.99%	2.69%	2.38%	3.38%	2.11%	4.53%	2.39%
Marion	5.13%	4.03%	5.63%	5.33%	7.72%	5.41%	5.93%	3.72%
Orange	7.08%	3.11%	5.89%	3.16%	3.79%	2.97%	6.15%	4.67%
Osceola	9.11%	2.36%	11.84%	8.91%	11.57%	8.74%	4.75%	2.67%
Polk	1.35%	1.35%	3.27%	1.38%	3.56%	1.34%	8.69%	8.45%
Seminole	6.11%	3.13%	4.38%	2.91%	11.89%	11.25%	6.29%	6.28%
Sumter	9.82%	4.93%	10.28%	6.66%	3.07%	2.98%	6.08%	5.71%
Volusia	2.03%	1.56%	3.37%	1.04%	5.86%	4.05%	6.24%	5.83%

3/5/2024

CONCLUSION

□ An integrated non-motorized demand and crash prediction framework is developed

Identify and incorporate non-motorists' exposure
3-step framework is proposed

Current Work

- Working on a tool
- Checking with 2022 data
 - >Checking whether the model needs to be updated

Predict in future year to demonstrate the applicability of the 3-step approach

UNIVERSITY OF CENTRAL FLORIDA

THANK YOU Questions?

Yasmin. S., Bhowmik T., M. Rahman and N. Eluru (2021). "Enhancing Non-Motorized Safety by Simulating Trip Exposure using a Transportation Planning Approach", Accident Analysis and Prevention, Volume 156, June 2021, 106128

https://www.tanmoybhowmik.com/

tbhowmik@pdx.edu

Supplementary Materials

VALIDATION (2010)

IVERSITY

UCF

Models	Events	Observed	Predicted
D 1 4 *	Total Zones with zero trip count	4007.00	4006.80
Pedestrian	Total number of zonal trips	1260090.60	1255479.90
generator model	Average zonal trips	265.45	264.48
	Total Zones with zero trip count	4010.00	4010.49
Pedestrian	Total number of zonal trips	1242270.50	1236690.70
attractor model	Average zonal trips	261.70	260.52
	Total Zones with zero trip count	4574.00	4573.82
Bicycle generator	Total number of zonal trips	166248.45	165671.36
model	Average zonal trips	35.02	34.90
	Total Zones with zero trip count	4581.00	4581.18
Bicycle attractor	Total number of zonal trips	165845 77	171959 97
model	Average zonal trips	34 94	36.22
land State			

35

UCF

FUTURE YEAR PREDICTION (2017)

Total number of pedestrian and bicycle crashes for the year 2017

UCF

FUTURE YEAR PREDICTION (2017)

Total number of pedestrian and bicycle fatal crashes for the year 2017