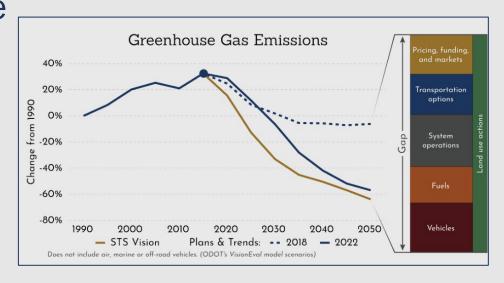
## **NW Transportation Conference**

# Climate-Friendly & Equitable Communities (CFEC) Vehicle Miles Traveled (VMT)

Zachary Horowitz

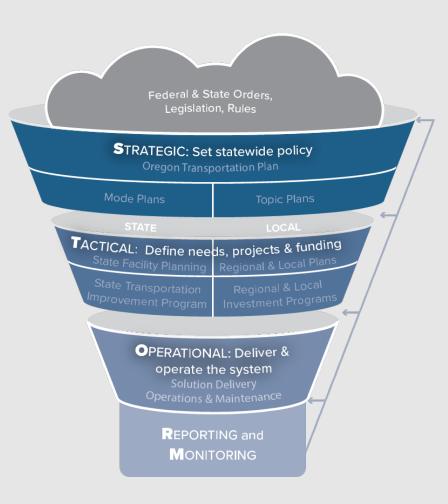
March 4, 2024




#### **Presentation Outline**

- A brief history of greenhouse gas planning in Oregon
- Statewide policy to local plans how did we get to Vehicle Miles Traveled (VMT) as a performance measure?
- Implementation within Transportation System Plans (TSP)
- Calculating VMT

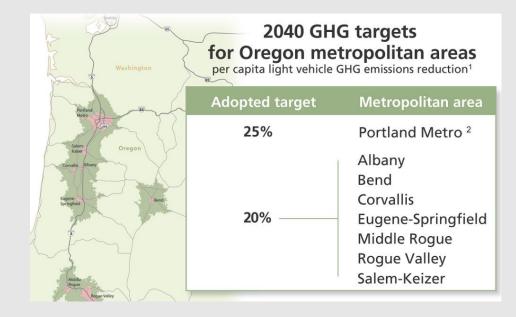



## **CFEC Background**

- ORS 468A.205 was adopted by Legislature in 2007, setting a goal to reduce GHGs to 75% below 1990 levels by 2050.
- In 2011, LCDC adopted rules (OAR 660-044) that set **GHG Reduction Targets** for metropolitan areas of the state.
- Statewide Transportation Strategy outlined actions to meet that goal (2013)
- Executive Order 20-04 directed ODOT and DLCD to adopt amendments to the TPR directing cities to meet GHG reduction targets through transportation plans



## **CFEC** in the Planning Process


- <u>Statewide</u> Transportation Strategy (STS)
- Scenario Planning (OAR 660-044)
- Transportation Planning Rules (OAR 660-012)
  - Transportation System Plans
  - Climate Friendly Areas
  - Performance Standards
  - VMT analysis and reporting





## Metropolitan Greenhouse Gas (GHG) Reduction

- ODOT Climate Office models GHG through the VisionEval (formerly Greenstep) model
  - Required in Metro, Salem, and Eugene
  - Regional targets set in OAR 660-044
  - VisionEval is not the same as a travel demand model
- Ties to the TPR (OAR 660-012) via performance measures
  - Housing, employment, active transportation, transportation options, parking, etc.
  - And...VMT per capita





## Household-based (HH) VMT per capita

- This is the key performance measure from the new TPR
- Cities and counties subject to the rules must develop CFECcompliant TSPs that reduce HH-based light vehicle VMT per capita

## GOAL = Emission Rate x TARGET

$$\frac{Emissions}{Persons} = \frac{Emissions}{Miles} \times \frac{Miles}{Persons}$$

## What About a Technology Solution?

- Electric vehicles what if everyone drove an EV?
  - Still need to generate and transport electricity
  - Still need to construct and develop the infrastructure
  - Still need to build EVs, maintain roadways, etc.
  - Will take a long time based on current fleet mix
- EVs + Pricing (tolls, VMT pricing, HOT lanes)
  - Effective to raise revenue, reduce congestion and manage demand
  - Not implemented yet

Bottom line: Technology helps, but VMT needs to be reduced to meet statewide climate goals



# Calculating VMT What to Know



## Rule 660-012-0005(64) - VMT Definition

"Vehicle Miles Traveled (VMT)" means all jurisdiction household-based light vehicle travel regardless of where the travel occurs.



## Rule 660-012-0160 (Reducing VMT in TSPs)

#### **Key Messages:**

- Calculated based <u>only</u> on a jurisdiction's households
- Based on the TSP fiscally-constrained project list
- TSPs may only be adopted if the horizon year VMT per capita is no greater than the base year VMT per capita
- VMT is measured on a per capita basis



#### **VMT Calculation Process Goals**

- Align with definition
- Consistent and repeatable across Oregon MPOs
- Documentable
- Supportive of GHG and VMT reporting requirements
- Incremental modifications to current modeling process
  - Demographics/households
  - Land use and employment data
- Integrate Climate Friendly Areas (CFA)
- Prepare for wider use of activity-based models



## Which VMT are we Including?

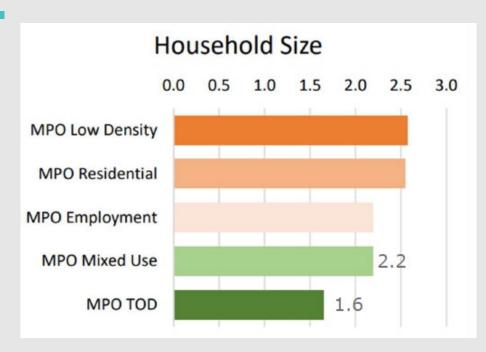
- Household-based
- Trips beginning within a TAZ in a specific jurisdiction that:
  - End in the same TAZ
  - End elsewhere in the model area
  - End elsewhere outside the model area (using SWIM)
- Non-home based (NHB) trips
  - Activity-based models (easier)
  - Trip-based models (not so easy)



## Which VMT are we not including?

- Visitors
  - Challenge is "denominator" the per capita component
- Commercial trips
  - Not typically household-based and align with business activity
- Future opportunities/ideas
  - Calculate VMT for visitor/commercial trips at the MPO level
  - Track and report GHG against statewide goals
  - Proportion out to individual jurisdictions in an MPO

## **Population Synthesizer**


- Already in use in activity-based model
- Can provide additional details to future demographic forecasting
- Focus on elements that drive travel decisions
  - Household size distribution (number of people in a house)
  - Percentage of single-family/multi-family homes by TAZ
- Metro has a different process based on historical approach





#### TAZ Modifications that can Influence VMT

- Oregon PlaceTypes
  - Serve as part of model QA/QC process to create the
  - Opportunity to review population and employment densities
  - Review of transit availability within TAZs
- TAZ Accessibility
  - Review/modification of centroid connectors (length, location)
  - Integration of bicycle/pedestrian facility quality measures





## Non-home-based (NHB) VMT methodology

- Applies to both NHB work and NHB non-work trips
- Determine HBW and NHBW trips by TAZ via trip generation step
- Identify total percentage of HBW trips for jurisdiction by destination zone to create home-based "vector row matrix" (where trips are coming from)
- Create transpose "vector column matrix" and apply to NHBW matrix to determine destination and number of NHBW trips for each zone pair
- Create TAZ-TAZ trip length matrix for each zone pair
- Multiple NHBW trips by trip length matrix and sum
- Complete process for HBNW and NHBNW trips

## Non-home-based (NHB) VMT methodology

| D          | E                   | F        | G       | Н     | 1             | J | K      | L    | М      | N      | 0  | Р  | Q | R | S     | Т       | U      | V     | W     |
|------------|---------------------|----------|---------|-------|---------------|---|--------|------|--------|--------|----|----|---|---|-------|---------|--------|-------|-------|
|            |                     |          |         |       |               |   |        |      |        |        |    |    |   |   |       |         |        |       |       |
| Assume 1,  | 2 are Mil zo        | nes      |         |       |               |   |        |      |        |        |    |    |   |   |       |         |        |       |       |
|            | From Mil            |          |         |       |               |   |        |      |        |        |    |    |   |   |       |         |        |       |       |
|            |                     | HBW N    | /latrix |       |               |   |        |      | NHBW I | Matrix |    |    |   |   |       | NHBW fr | om Mil |       |       |
|            | 1                   | 2        | 3       | 4     |               |   |        | 1    | 2      | 3      | 4  |    |   |   | 1     | 2       | 3      | 4     |       |
| 1          | 4                   | 2        | 7       | 1     | 14            |   | 1      | 3    | 2      | 5      | 1  | 11 |   | 1 | 1.76  | 1.18    | 2.94   | 0.59  | 6.47  |
| 2          | 6                   | 3        | 5       | 2     | 16            |   | 2      | 7    | 1      | 4      | 6  | 18 |   | 2 | 2.06  | 0.29    | 1.18   | 1.76  | 5.29  |
| 3          | 2                   | 8        | 10      | 9     | 29            |   | 3      | 5    | 3      | 9      | 1  | 18 |   | 3 | 2.31  | 1.38    | 4.15   | 0.46  | 8.31  |
| 4          | 5                   | 4        | 4       | 7     | 20            |   | 4      | 4    | 8      | 2      | 3  | 17 |   | 4 | 0.63  | 1.26    | 0.32   | 0.47  | 2.68  |
|            | 17                  | 17       | 26      | 19    | 79            |   |        | 19   | 14     | 20     | 11 | 64 |   |   | 6.76  | 4.12    | 8.59   | 3.29  | 22.76 |
|            |                     |          |         |       |               |   |        |      |        |        |    |    |   |   |       |         |        |       |       |
|            |                     | Mil HB \ | Vector  |       |               |   | Mil HB | 1    | 0.59   |        |    |    |   |   |       |         |        |       |       |
|            | 1                   | 2        | 3       | 4     |               |   | Vector | 2    | 0.29   |        |    |    |   |   |       | Trip Le | ength  |       |       |
|            | 0.59 0.29 0.46 0.16 |          |         |       | $\Rightarrow$ |   | 3      | 0.46 |        |        |    |    |   | 1 | 2     | 3       | 4      |       |       |
|            |                     |          |         |       |               |   | (t)    | 4    | 0.16   |        |    |    |   | 1 | 1.00  | 2.00    | 3.00   | 4.00  | 10.00 |
| From Mil   | to Z1               | to Z2    | to Z3   | to Z4 |               |   |        |      |        |        |    |    |   | 2 | 2.00  | 1.00    | 4.00   | 3.00  | 10.00 |
|            |                     |          |         |       |               |   |        |      |        |        |    |    |   | 3 | 3.00  | 4.00    | 1.50   | 5.00  | 13.50 |
|            |                     |          |         |       |               |   |        |      |        |        |    |    |   | 4 | 4.00  | 3.00    | 5.00   | 1.50  | 13.50 |
|            |                     |          |         |       |               |   |        |      |        |        |    |    |   |   | 10.00 | 10.00   | 13.50  | 13.50 | 47.00 |
|            |                     |          |         |       |               |   |        |      |        |        |    |    |   |   |       |         |        |       |       |
| Copied fro | m below             |          |         |       |               |   |        |      |        |        |    |    |   |   |       |         |        |       |       |
|            | NHBW from Mil       |          |         |       |               |   |        |      |        |        |    |    |   |   | VMT   |         |        |       |       |
|            | 1                   | 2        | 3       | 4     |               |   |        |      |        |        |    |    |   |   | 1     | 2       | 3      | 4     |       |
| 1          | 3.09                | 1.82     | 4.18    | 1.37  | 10.45         |   |        |      |        |        |    |    |   | 1 | 1.76  | 2.35    | 8.82   | 2.35  | 15.29 |
| 2          | 3.68                | 2.30     | 4.41    | 1.92  | 12.31         |   |        |      |        |        |    |    |   | 2 | 4.12  | 0.29    | 4.71   | 5.29  | 14.41 |
|            | 6.76                | 4.12     | 8.59    | 3.29  | 22.76         |   |        |      |        |        |    |    |   | 3 | 6.92  | 5.54    | 6.23   | 2.31  | 21.00 |
|            |                     |          |         |       |               |   |        |      |        |        |    |    |   | 4 | 2.53  | 3.79    | 1.58   | 0.71  | 8.61  |
|            |                     |          |         |       |               |   |        |      |        |        |    |    |   |   | 15.33 | 11.97   | 21.34  | 10.67 | 59.31 |
|            |                     |          |         |       |               |   |        |      |        |        |    |    |   |   |       |         |        |       |       |



#### **Case Studies**

- Milwaukie (Metro MPO)
  - Trip-based model
  - Uses existing 2040 Town Center as Climate Friendly Area (CFA)
  - More involved NHB trip calculation
  - Less opportunity (as of now) for future demographic change
- Ashland (Rogue Valley MPO)
  - Activity-based model
  - Three potential CFA candidate areas
  - Straightforward NHB, but more difficult outside model VMT
  - Working with City of Ashland on demographics

## Discussion & Questions









#### **Zachary Horowitz, PE**

Zachary.HOROWITZ@odot.oregon.gov

Transportation Analysis Engineer - TPAU

