Load Rating and Lateral-Torsional Buckling (LTB) in Simply Supported Steel Bridges

John Milcarek, PE ODOT Load Rating Engineer

Presentation Outline

- Load Rating Overview
- Problem Statement ("The Good, The Bad, and The Ugly")
- What is LTB?
- Research
- LTB Procedure
- Results
- ODOT-OSU Research Project

ODOT Load Rating Overview

 What is a Load Rating? 	LOAD:	R.F.
	DESIGN & LEGAL VEHICLES	
 Analysis of bridge in current condition 	HL93 (INVENTORY)	0.27
	TYPE 3 (50K)	0.83
 Based on latest inspection into 	TYPE 3S2 (80K)	0.66
 Modifications for condition redundancy material ADTT ato 	TYPE 3-3 (80K)	0.66
• Mounications for condition, redundancy, material, ADT, etc.	TYPE 3-3 & LEGAL LANE	
Rating Factors	TYPE 3-3 TRAIN & LEGAL LANE	0.67
* Nating Factors	SU4 TRUCK (54K)	0.70
• $> 1.00 = Good$	SU5 TRUCK (62K)	0.67
	SUB TRUCK (69.5K)	0.60
• $< 1.00 = Bad$	SU7 TRUCK (77.5K)	0.5/
	EV2 TRUCK (57.5K)	0.73
Results		0.47
		0.69
 Posting/restriction 	OR-CTP-2A (105.5K)	0.00
• Strongthoning	OR-CTP-3 (08K)	0.62
• Strengthening	STP VEHICLE, MULTI-LANE	0.02
Replacement	OR-STP-3(120.5K)	0.65
Replacement	OR-STP-4A (99K)	0.62
	OR-STP-4B (185K)	0.56
	OR-STP-4C (150.5K)	0.59
III Department	OR-STP-4D (162.5K)	0.51
of Transportation	OR-STP-4E (258K)	0.48
	OR-STP-5BW (204K)	0.49
	SPECIAL	

ODOT Load Rating Overview

- Original Load Ratings (early 1990's)
 - LFR (Tier-1)
 - AASHTO Standard Specs
 - 1989 Guide Specs
 - No LTB check for design or load rating

ODOT Load Rating Overview

- Updated Load Ratings (mid 2010's)
 - Switch to LRFR (Tier-2) method
 - AASHTO LRFD
 - AASHTO MBE
 - Re-rate for SHV's
 - Check for LTB required

Steel Bridge Population

- Rural (county roads)
- Short spans
- Rolled I-shapes
- Timber or corrugated steel decking
- Inadequate bracing
 - Deck
 - Cross frames or diaphragms

Problem Statement - "The Good"

- Adequate original load ratings
 - Yielding/buckling of top flange failure mode controls capacity
 - Minimal load postings if in good condition

Problem Statement - "The Bad"

- Inadequate updated load ratings
 - LTB controlled when bracing inadequate
 - SHV's
- Field investigation
- More load postings

Problem Statement - "The Ugly"

- Confusion among bridge owners
 - Why?
 - 30 days to make and install posting signs
- Anger from truckers and industry
 - Costly detours
 - Strained relationships
- More work for everybody
 - ODOT: Detailed review, letters, outreach
 - Owners: Posting signs, outreach to stakeholders
 - Users: Detours, delays

What is Lateral-Torsional Buckling (LTB)?

- Load-induced out-of-plane twisting due to:
 - Diminished strength in weak axis (I-shapes)
 - Insufficient bracing to prevent lateral movement
- Tight-rope analogy
- First discovered in 1960's
- Not codified until early 1990's
 - Used for design only
 - Primarily concern for new girder erection

LTB: Tight-rope Analogy

This Photo by Unknown Author is licensed under CC BY

15

LTB: Single I-Shape Girder

Why is LTB a Problem?

- Design check
 - Bridges built pre-1990's
- Local Bridge Inventory
 - I-shape
 - Inadequate bracing

Sanity Check Time!

- Where are the LTB failures?
- How do you fail multiple girders at the same time?
- Is the deck acting as a girder top flange brace?
- How can we prove that this failure mode won't govern?

Research

- FHWA/TxDOT/UT
- Yura, Phillips, Raju, Webb (1992) "Bracing of Steel Beams in Bridges"
- Webb, Yura (1991) "Evaluation of Stiffness of Bridge Decks"
- Vegnesa, Yura (1991) "An Ultimate Load Test to Study Bracing Effects of Bridge Decks"
- Yura, Phillips (1992) "Bracing Requirements for Elastic Steel Beams"

Research Conclusions

- Decks can act as a lateral brace
 - Must pass stiffness requirement
 - Concrete = stiff
 - Timber = maybe?
 - Corrugated steel not evaluated
- Take sum of LTB capacities under truck limits
- Code checks for AASHTO

Gather Information

- Determine if LTB controls capacity
- Ensure DF's are not conservative
- Site visits to determine:
 - Bracing type and locations
 - Positive connection between deck and top flange
 - Measure/verify dimensions

ODOT's LTB Procedure

- Based on findings of TxDOT research
 - Assume timber/corr. steel not stiff
- Only concrete decks can be considered as brace
 - Add brace at mid-span or between existing braces
 - Re-run girder analysis
- Timber and corrugated steel decks with unknown stiffness
 - Consider LTB failure of multiple girders
 - Adjust distribution factors
 - Re-run girder analysis

ODOT's LTB Procedure Results

Beneficial

- For concrete decks
- Closely spaced girders
- LTB capacity is close to yield
- Some cross bracing
- ~20% of cases

Not Beneficial

- For timber/corr. steel decks
- Widely spaced girders
- LTB capacity is very low
- Little or no cross bracing
- ~80% of cases

ODOT-OSU Research Project

- "New Methods for Improving Load Rating of Existing Steel Bridges for Torsional Buckling"
 - Oregon State University
 - Principal Investigator Christopher Higgins, Ph.D., P.E.
 - Technical Advisory Committee:
 - 5 ODOT Engineers
 - 1 Consultant Engineer
 - 1 Local Agency Engineer
- Timeline: Fall 2023 Fall 2026
- Budget: \$360K

ODOT-OSU Research Project

Objectives

- Is LTB a legitimate failure mode?
 - If yes, explain to bridge owners why
- Why aren't these bridges failing in LTB?
 - Perform analysis
 - Develop new rating methods
- Benefits
 - Determine accurate bridge load capacity
 - Reduce or eliminate unnecessary posting
 - ODOT's mission

ODOT-OSU Research Project

- Key Tasks:
 - TAC meetings
 - Literature review
 - Database of LTB bridges
 - Lab experiments
 - Field instrumentation and load testing
 - Compare results
 - Develop rating and retrofit guidance
 - Final report

Questions?

John Milcarek, PE ODOT Bridge Section John.P.Milcarek@odot.oregon.gov 971-374-3929

