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Landslides in Oregon
• Landslides are a major source of infrastructure 

damage in the Pacific Northwest.
• Landslides are a negative geotechnical asset; 

their mitigation is also an asset. Both are too 
often forgotten…

• Avoiding or absorbing damage in geotechnical 
assets achieved through:

• Expanded attention to monitoring
• Cataloguing landslides and assets for analysis
• Using advanced in-situ and remotely-sensed data to 

interpret landforms
• Using data-driven models to understand landslide 

impacts
• Overview of a climate- and seismic-focused 

project focused on landslide impacts.



• Detailed topography for:
• Stability analyses.
• Identification of unstable terrain.
• High-resolution change.

• Can be integrated with 
geospatial information about 
infrastructure, development, 
homes, population and more.

• Particularly useful for mapping 
past landslide features.

• Great!!! … Now what?

Lidar as an asset.
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Back-Analyses of Landslides

• Lidar DTMs very applicable to interpreting singular events.
• Through sensitivity analyses and use of landslide inventories, 

we can explore regional trends in landslide characteristics. 
• Herein, we introduce an approach to:

• Infer landslide slip surface geometry for entire landslide inventories
• Reconstruct pre-failure topography for landslides
• Perform 3D back-analyses on thousands of landslides
• Infer spatial trends of strength associated with specific geologies, 

regions, materials, etc.
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Hybrid Thin-Plate Spline
• We leverage high-resolution lidar 

topographic data to analyze these large 
datasets.

• We use a modified thin-plate spline 
(TPS) to use main scarps, landslide 
deposits to infer rupture surface 
geometry (Bunn et al. 2020).

• TPS capable of producing complex 
shapes found in landslide slip surfaces.

• TPS may reduce complexity through 
regularization of boundary conditions.

Bunn, M., Leshchinsky, B., & Olsen, M. J. (2020). Estimates of three-dimensional rupture surface geometry of deep-seated landslides using landslide inventories and high-
resolution topographic data. Geomorphology, 367, 107332.
Alberti, S., Leshchinsky, B., Roering, J., Perkins, J., & Olsen, M. J. (2022). Inversions of landslide strength as a proxy for subsurface weathering. Nature Communications, 13(1), 
6049.
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• Applied to series of well-characterized landslides to calibrate 
regularization, resolution, projection constraints. 

Bunn, M., Leshchinsky, B., & Olsen, M. J. (2020). Estimates of three-dimensional rupture surface geometry of deep-seated landslides using landslide inventories and high-
resolution topographic data. Geomorphology, 367, 107332.
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Reconstruction of Surface Geometry
• Similar procedures may also 

be applied to reconstruct 
pre-failure surface geometry.

• Done through ignoring 
landslide extents and infilling 
from surrounding “unfailed” 
terrain. 
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Application to Landslide Inventories
• We gathered high-quality landslide 

inventories in Oregon (DOGAMI 
SLIDO).

• Reconstruct failure geometries 
from each inventory to glean 
trends in geologic unit, geometry, 
mechanism, strength.

• Performed on landslides w/ limited 
estimated evacuation.

• Overall, we used >7,300 
landslides in our analysis.  

OREGON

Landslides analyzed

Bunn, M., Leshchinsky, B., & Olsen, M. J. (2020). Estimates of three-dimensional rupture surface geometry of deep-seated landslides using landslide inventories and high-
resolution topographic data. Geomorphology, 367, 107332.
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Lithology
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• Can take geologic 
classifications and 
have associated 
strength properties!

• Can take typical 
lithologic units and 
begin to characterize 
differences in 
strength, 
morphology, etc.

• Can be used in 
forward-facing 
models!



Landslide Susceptibility and Risk
• We can apply slope stability models as a 

predictive tool for shallow landslide 
susceptibility.

• Use lidar-derived digital terrain models, 
forensic inputs, remotely-sensed soil 
moisture data.

• Physics- and process-based approach 
enables extrapolation to a variety of 
triggering disturbances, e.g.:

• Storm intensity (intensity-duration-frequency 
relationships).

• Seismic forcing.
• Evaluate role of antecedent ground 

moisture, rainfall anomaly, earthquake 
timing on landsliding. 
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Susceptibility
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1) Characterizes discrete 
landslide volumes – triggered 
by rainfall or earthquakes

2) Identify unstable clusters using 
3D limit equilibrium

3) Achieve force equilibrium by 
accumulating downslope cells 
of soil



Susceptibility
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Inputs
• Strength

• Distribution determined from forensics code.
• Soil Moisture, Unsaturated Properties

• Soil moisture time series from NASA SMAP 
satellite data (daily)

• SoilGrids, Rosetta GeoTransfer Function
• Estimated Soil Depth

• Roering (2006) hillslope evolution model
• High-resolution DTM

• OLC 3 ft. lidar, 1068 km2

• Intensity-duration precipitation for storm 
recurrence interval

• ODOT hydraulics manual (e.g. 10 year storm)
• Seismic Event PGA map

• OHELP, (Sharifi et al. 2016)
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Susceptibility
• Soil depth and topography used as 

boundary conditions
• Landslides taking on “natural” discrete 

shapes (not just a slope map…)
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Role of Seasonality on Landsliding
• Have you ever wondered…how 

would coseismic landslide 
impacts be different in the wet 
versus dry months?

• How much does the overall 
“wetness” of the winter matter 
in terms of landslide triggering 
events?

• These questions revolve 
around evaluating antecedent
moisture conditions.
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Does it matter when the “big one” happens?
• Landslide area density 

changes with seasonal 
antecedent soil moisture.

• Seasonality shows up to 
2-4 orders of magnitude 
more landsliding in winter 
vs. summer months.

• Wet conditions vs. dry 
results in 2-12 times more 
coseismic landslides. 

• The bigger the 
earthquake, more 
landsliding.
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Assessing Impact: 
Oregon Coast Range

• Lifelines serving Oregon coastal communities 
are at risk for severe landsliding events during 
future earthquakes.

• Performed landslide impact assessment of 
critical lifelines in the Oregon Coast Range

• Developed simple GIS tools to use overlapping 
landslide runout polygons + geometry to 
understand debris volumes.

• Used transportation + economic data to 
understand impact.
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Impact Assessment: 
Closure and Expense

1. Use landslide clusters from susceptibility 
and associated runout to look at 
interaction with ODOT right-of-way 
(ROW)

2. Where landslides overlap ROW, 
time+cost of repair is assessed.

3. Result is time and cost of repair for each 
affected segment of highway and a total 
repair time and cost for entire corridor.



Repair Times and Costs – Debris Prism

• Create 3D prism of landslide debris on highway from lidar DEM
• Landslide debris slope = mean slope of superimposed landslide cluster
• Cut slope angle for emergency assumed to be 45°
• If landslide debris slope > cut slope angle, a retaining wall is constructed 

(small percentage of repairs…)
• Two highway widths assessed: 24-ft and 40-ft

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿ℎ𝑤𝑤𝑤𝑤
𝑨𝑨𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
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Repair Times and Costs – Duration of Closure

• Excavation rate:
𝑅𝑅𝑒𝑒𝑒𝑒 = 5000 �𝑦𝑦𝑦𝑦3

𝑑𝑑𝑑𝑑𝑑𝑑 -or- 𝑅𝑅𝑒𝑒𝑒𝑒 = 3600 �𝑚𝑚3
𝑑𝑑𝑑𝑑𝑑𝑑

• Duration of closure:

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑒𝑒𝑒𝑒
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Repair Times and Costs – Cost of Closure
• Repair costs from:

• ODOT Unstable Slopes Database (for standard cut slope repairs)
• 2018 ODOT Bridge Cost Data Sheet for 2016-2018 (for retaining wall 

repairs)

• For cut slope/retaining wall repairs, cost of excavation:  𝐶𝐶𝑒𝑒𝑒𝑒 = $14.40/𝑚𝑚3

• For retaining wall repairs, wall construction cost: 𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = $59.20/𝑓𝑓𝑓𝑓2

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = � 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶𝑒𝑒𝑒𝑒 , 𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶𝑒𝑒𝑒𝑒 + 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
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Repair Times and Costs – Cost of Closure
• Closure costs included in shapefile 

data for each corridor/scenario
• May be easily mapped in GIS software 

by defining symbology by closure cost
• In report, costs are shown using 

profiles of milepost vs. cumulative 
repair cost:

• Assuming both 24-ft and 40-ft width 
roadways

• Cost impacts generated using 
Transportation Planning and Analyses 
Unit (TPAU)

Daily Commodity Flow (USD)
OR06

Eastward Westward
$410,389 $558,468

Average Daily Cost of Traffic Rerouting (USD)
OR06

$109,658



August Antecedent Conditions – M8.7 Earthquake

hotspots in steep terrain, 
especially in the west (closer to 
the Cascadia Subduction Zone)
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• Higher sensitivity to seismicity
• Higher and more widespread susceptibility 

values are observed than for dry conditions
• Highest susceptibility in the west (driven by 

seismicity)

February Antecedent Conditions – M8.7 Earthquake
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• Highly sensitive to heavy 
rainfall

• Widespread, moderate to high 
susceptibility

February Antecedent Conditions – 100-Year Storm - No 
Earthquake
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• Severe distribution of susceptibility 
throughout

• Highest susceptibility in the west
• Don’t want to be present for this one…

sharp gradient due to 9km resolution 
moisture raster

February Antecedent Conditions – 100-Year Storm – M8.7 
Earthquake
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Susceptibility 
Observations
• Relatively stable in dry, summer conditions
• Susceptibility sensitive to moisture and 

rainfall, exacerbating susceptibility 
distribution during earthquakes

• Distribution of susceptibility varies 
depending on physical driver (e.g. 
rainstorm, seismicity, multi-hazard)
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Risk Assessment

• Full suite of closure time maps, closure 
time profiles, and closure cost profiles 
available in SPR808 report 

• Comprehensive table containing total 
closure times and costs, as well as event 
probabilities, commodity flow losses, and 
traffic rerouting costs available

• Shapefiles containing closure times and 
costs (all road widths and with/without 
60-foot buffer)
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August Antecedent Conditions – M8.7 Earthquake

• Some dispersed landslides, but 
limited closure (~3 days).
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February Antecedent Conditions – M8.7 Earthquake

• Starting to see more closures along the 
highway (19 days) assuming 5000 cy/day 
excavation rate

• Can inform resilience planning by looking at 
closure time profile…
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• Closed for:
• 18.8 days (24-ft wide road)
• 52.2 days (40-ft wide road)

• If repaired from  both ends, 
time can ideally be reduced by 
half (dashed profiles)

• Cumulative cost shown as 
function of milepost

February Antecedent Conditions – M8.7 Earthquake

Cumulative Closure Cost Profile

Cumulative Closure Time Profile
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• Quite a bit of closure (~7 days)

February Antecedent Conditions – 100-Year Storm - No 
Earthquake
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• Severe closure scenario (53.1 
days for narrow road)

February Antecedent Conditions – 100-Year Storm – M8.7 
Earthquake
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• Closed for:
• 53.1 days (24-ft wide road)
• 147.5 days (40-ft wide road)

Cumulative Closure Cost Profile

Cumulative Closure Time Profile

February Antecedent Conditions – 100-Year Storm – M8.7 
Earthquake
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Scenario-Based ROW Impacts
Test Information Closure and Costs (40 ft Road Width) Closure and Costs (24 ft Road Width)

Test 
#

Highwa
y Season Rainfall

EQ 
Moment

Magnitude

Closure 
Duration

(days)

Total 
Repair

Cost ($)

Commodity
Loss ($)

Rerouting
Loss ($)

Closure 
Duration

(days)

Total 
Repair

Cost ($)

Commodity
Loss ($)

Rerouting
Loss ($)

1 US30
summe

r off off 7.47
$411,091 $17,105,522 $1,669,133 2.69 $211,745 $6,157,988 $600,888

4 US30
summe

r off 8.7 33.03
$1,818,072 $75,650,136 $7,381,835 11.89 $722,501 $27,234,046 $2,657,460

6 US30 winter off off 125.22
$6,968,623 $286,832,70

4
$27,988,73

6
45.08 $2,763,962 $103,259,76

8
$10,075,94

3

9 US30 winter off 8.7 131.93
$7,528,488 $302,182,88

0
$29,486,58

2
47.49 $3,017,910 $108,785,83

2
$10,615,16

8

16 US30 winter
100-
year off 122.65

$7,261,696 $280,935,55
2

$27,413,29
8

44.15 $2,855,909 $101,136,79
2

$9,868,785

19 US30 winter
100-
year 8.7 172.72

$9,947,466 $395,614,33
6

$38,603,49
2

62.18 $3,946,541 $142,421,15
2

$13,897,25
6

26 OR06
summe

r off off 0.76
$41,637 $732,822 $82,943 0.27 $14,989 $263,816 $29,860

29 OR06
summe

r off 8.7 1.65
$90,703 $1,596,401 $180,686 0.59 $32,653 $574,704 $65,047

31 OR06 winter off off 6.48 $356,719 $6,278,347 $710,603 2.33 $128,419 $2,260,205 $255,817
34 OR06 winter off 8.7 52.17 $3,089,513 $50,546,760 $5,721,043 18.78 $1,312,383 $18,196,832 $2,059,576

41 OR06 winter
100-
year off 83.77

$4,737,137 $81,165,760 $9,186,600 30.16 $1,840,754 $29,219,676 $3,307,176

44 OR06 winter
100-
year 8.7 147.53

$8,121,059 $142,932,51
2

$16,177,55
5

53.11 $2,923,581 $51,455,704 $5,823,921

51 US20
summe

r off off 0.00
$0 $0 $0 0.00 $0 $0 $0

54 US20
summe

r off 8.7 0.00
$0 $0 $0 0.00 $0 $0 $0

56 US20 winter off off 6.47 $355,918 $8,953,142 $1,208,077 2.33 $128,130 $3,223,131 $434,908
$3,334,091 $83,869,328 $11,316,76 21.80 $1,200,273 $30,192,956 $4,074,035
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Climate Change 
Impacts on Shallow 
Landslides

• Climate change will result in wetter, 
warmer winters, more extreme rain events

• Current climatic conditions compared to 
future climate projection: RCP 8.5 (2040-
2069)

• Impact on landsliding quantified as:
1. Difference in number of failed cells
2. Percent change in susceptibility for 

each DEM raster cell

Again, we will focus on corridor OR06, but a 
full suite of results are available in the report 
and in SPR808 report.
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Climate Change –
Comparison of Incipient 
Slope Failure

• For current antecedent February conditions, we 
consider following rainfall events are applied:

• 10-year storm (current climatic conditions)
• 10-year storm (scaled by RCP 8.5, 2040-2060 

anomaly)
• 50% susceptibility threshold applied to resulting 

susceptibility maps
• Blue cells show failed cells (≥ 50% susceptibility) 

under current conditions
• Orange cells show additional failed cells (≥ 50% 

susceptibility) after rainfall is scaled by anomaly
42



• 13.6% increase in planform 
area of failures
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Climate Change – Percent 
Change of Shallow Landslide 
Susceptibility
• For current antecedent February conditions, the 

following rainfall events are applied:
• 10-year storm (current climatic conditions)
• 10-year storm (scaled by RCP 8.5, 2040-

2060 anomaly)

• Visual comparison of raw distributions of 
landslide susceptibility
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• Increased susceptibility throughout
• Non-uniform increases in susceptibility
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Climate Change Assessment Summary
Rainfall Climatic Scenario Failed Cell Area 

(km2)1
% Increase in Failed Cell 

Area
Total Repair 

Cost2,3

US30

10-year
current 15.848

10.46%
$6,142,627

RCP 8.5 (2040-
2069) 17.505 $6,187,891

10-year
current 56.380

13.63%
$3,026,188

RCP 8.5 (2040-
2069) 64.064 $3,234,754

US20

10-year
current 810.898

1.87%
$8,402,748

RCP 8.5 (2040-
2069) 826.080 $8,485,809

OR42

10-year
current 6.260

9.25%
$581,940

RCP 8.5 (2040-
2069) 6.839 $628,128

1 Only incipient failure counted (landslide runout and buffer not included in count).
2 Closure cost estimate includes estimated runout in analysis, but excludes landslide buffer.
3 Closure cost analysis assumes 40-foot (12.2-m) wide roadway.
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Climate Change Assessment 
Conclusions
• Increased rainfall, due to climate change, will 

increase:
• The area of landslides in the assessed corridors
• The distribution of landslides in the assessed corridors

• The increase in susceptibility is non-uniform due to:
• Spatial variability in:

• Soil types
• Rainfall magnitude
• Rainfall anomaly
• Variations in local topography

• Repair costs of ODOT right-of-way may see an 
increase in repair costs and closure times for 10 
year storms that are closer to “current” 100 year 
storm conditions.

• Increase of 2-14% in landsliding rates.
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Conclusions: Applications 
of Susceptibility 

• Susceptibility maps and TPAU outputs inform 
risk analyses, quantifying highway closure 
times and costs of highway repair, as well as 
commodity losses and costs tied to rerouting 
traffic during closure

• Corridors are shown to produce varying 
distributions of susceptibility depending on 
topography, antecedent moisture, rainfall 
events, seismic events, or multi-hazard 
events

• Susceptibility distributions driven by 
seismicity are shown to be exacerbated by 
high moisture and extreme storm events
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Conclusions: Applications 
of Susceptibility 
• Risk maps and risk profiles, showing the locations 

of closure “hot spots,” provide a glimpse of the 
potential impact of a large CSZ earthquake, 
suggesting that planners may:

1. Place stockpiles of materials or equipment 
strategically to expedite post-disaster 
recovery

2. Choose to implement mitigation techniques 
in areas that are unstable but of manageable 
size

3. Make decisions regarding the scope of 
repairs in context of reopening and/or safety
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